Wednesday, April 27, 2016

Where's the soul?

I worry much more than I should about whether embryos have souls. That’s to say, I worry about how those folks who believe that at some stage humans are granted a soul by the grace of God make sense of this question.

But as I discovered while reviewing Henry Greely’s book The End of Sex, Father Tadeusz Pacholcyzk – who has a doctorate in neuroscience from Yale and writes for the National Catholic Bioethics Center in Philadelphia – has at least cleared up one thing for me. Whether or not embryos have a soul should, he says, have no bearing on our judgement about the rights and wrongs of using human embryo tissue for research into stem cells, or presumably for research into anything else. He clarifies that Catholic tradition has no unanimous verdict or tradition on the precise moment of ensoulment. However, Saint Augustine, rarely consulted for his knowledge of embryology, “seemed to shift his opinion back and forth during his lifetime between immediate and delayed ensoulment”. No wonder; it’s a tough question. Much, much tougher, indeed, than Augustine could ever have imagined, because of course we can’t expect him to have known that only about 12% of fertilized eggs in vivo will develop beyond three months of pregnancy. We had best assume, then, that ensoulment is delayed until some time after that, for otherwise heaven will be overwhelmingly filled with souls of embryos less than three months old. I don’t think any of the Christian Fathers ever imagined that heaven should be as odd a place as that.

The point, Pacholcyzk says, is irrelevant in any case, because a human embryo at any stage is destined for a soul “and should not be cannibalized for stem cell extraction”. (The use of “cannibalize” to denote dismemberment for spare parts applies, by the way, only to machines. For living organisms, it refers to the eating of one’s own species. But heck, it sounds bad, doesn’t it?) We must assume that the creation of embryos for any other purpose than procreation is also prohibited by Catholic teaching. In fact, Pacholcyzk says, it is even more immoral to destroy an embryo that had not received an immortal soul (although we don’t, remember, know if anyone actually does this, because we don’t know when ensoulment happens) than to destroy an ensouled embryo – worse than murder! – “because the immortal soul is the principle by which that person could come to an eternal destiny with God in heaven”. That person? Yes, an embryo is always a person – or rather, “the privileged sanctuary of one meant to develop as a human person.”

But evidently, the majority of human embryos are not, as Pacholcyzk insists, “meant [by God, one assumes] to develop as a human person” – they don’t get beyond three months. Or has God really made such a hash of human procreation, so that all these embryos destined for personhood keep failing to attain it?

The corollary to all this must be that the Catholic Church disapproves of IVF too, since that generally involves the creation of embryos that are not given the opportunity to grow to personhood. And as the Catholic World Report reminded us in 2012, it does indeed:

Catholic teaching prohibits in vitro fertilization, maintaining that a child has the right to be conceived in the marital embrace of his parents. Human sexuality has two components, the unitive and procreative; IVF separates these components and makes the procreative its only goal. Pope Paul VI said that there is an “inseparable connection, willed by God, and unable to be broken by man on his own initiative, between the two meanings of the conjugal act: the unitive meaning and the procreative meaning.

There are other issues involved. IVF makes the child a commodity produced in a laboratory, and makes doctors, technicians, and even business people part of the conception process. The sperm used is usually obtained by masturbation, which the Church teaches is immoral. The sperm or eggs used may not come from the couple desiring the child; because one of the spouses may be infertile, it may be necessary to use the sperm or eggs from an outsider.

That phrase, making a child conceived through IVF “a commodity produced in a laboratory”, is one of the most obscene I have ever heard from the church in modern times. God’s love is infinite – but you, Louise Brown (and four million others), are just a commodity produced in a laboratory.

Of course, Catholic countries don’t tend to feel they can be quite this hardline with their citizens, and so they cook up some crude compromise, such as Italy insisting that all embryos created in IVF (a maximum of three) must be implanted. This flouts Catholic teaching, and also flouts the right of people using IVF to the best chance of making it work. Everyone loses.

Actually, there is a form of IVF that the Catholic church will sanction. It is called gamete intra-Fallopian transfer, or (cutely) GIFT. Here’s how I described it in my book Unnatural. The woman’s eggs are collected as in IVF and mixed with sperm in vitro. This mixture is then immediately transferred back to the woman’s Fallopian tubes, so that fertilization can occur inside the body. One claimed benefit of GIFT is that the embryo can begin its earliest development in ‘natural surroundings’ rather than in an ‘artificial environment’. It’s not clear that a developing embryo cares in the slightest about this distinction, and indeed GIFT both is more invasive than standard IVF and makes it impossible to select the embryo of best apparent quality from several prepared in vitro. But it’s OK with the church, provided that the sperm is collected using a condom (a perforated, leaky one, mind) in sexual intercourse and not by masturbation – because everything then seems to be happening in its ‘natural’ place, with just a momentary sleight-of-hand involving a Petri dish. This obsession with the ‘proper’ mechanics, notwithstanding the lengths that are necessary here to achieve it, speaks of a deeply strange attitude towards the relation between sex and procreation, not to mention the bizarre and, I should have thought, highly disrespectful notion of a God who watches as if with clipboard in hand (but ready to avert his eyes at the crucial point) to tick off each step when it happens as it ‘ought’.

Generally I want to find ways to respect what people believe. But the Catholic position on IVF is on a par, in its inhumanity, with its position on condom use. If I sound sarcastic about it, please don’t read that as flippancy. It is fury. If these folks could content themselves with expressing their prejudices as blind faith and dogma, I would find it more palatable than if they tried to justify them with idiotic attempts at rational argument. I’m told that “Father Tad... studied in Rome, where he did advanced studies in theology and in bioethics.” I don’t find a shred of ethical reasoning in his comments on embryo research. It is unreason of the most retrograde kind.

Wednesday, March 23, 2016

On the attack

One of the easiest ways to bring humour to music is with timbre. It’s cheap (literally) but still funny to play Led Zeppelin’s “Whole Lotta Love” or Richard Strauss’s “Also Sprach Zarathustra” on kazoo, as the Temple City Kazoo Orchestra did in the 1970s. Most things played on kazoo are funny. It just has a comical timbre.

Such performances inadvertently make a serious point about timbre, which is that it can matter more than the notes. This is overlooked when music is considered as notes on paper. Yet musicologists have largely neglected it, for the simple reason that we don’t really know what it is. One definition amounts to a negative: if two sound signals differ while being identical in pitch and loudness, the difference is down to timbre.

One feature of timbre is the spectrum of pitches in a note: the amplitudes of the various overtones. These are quite different, for example, for a trumpet and a violin both the same note. But our sense of timbre depends also on how this spectrum, and the overall volume, changes over time, particularly in the initial “attack” period of the first few fractions of a second. These are acoustic properties, though, and it might be more relevant to ask what are the perceptual qualities by which we distinguish timbre. Some music psychologists claim that these are things like “brightness” and attack, others argue that we interpret timbre in terms of the physical processes we imagine causing the sound: blowing, plucking, striking and so on. It’s significant too that we often talk of the “colour” of the sound.

Arnold Schoenberg thought it should be possible to write music based on changes of timbre rather than pitch. It’s because we don’t know enough about how the brain organizes timbre that this notion didn’t really work. All the same, Schoenberg and his pupils created a style called Klangfarbenmelodie (sound colour melody) in which melodies were parceled out between instruments of different timbre, producing a mesmeric, shimmering effect. Anton Webern’s arrangement of a part of Bach “The Musical Offering” is the most renowned example.

There’s one thing for sure: timbre is central to our appreciation of music, and if we relegate it below more readily definable qualities like pitch and rhythm then we miss out on a huge part of what conditions our emotional response. It would be fair to say that critical opinion on the music of heavy-metal band Motörhead, led by the late bass guitarist Lemmy Kilmister, was divided. But if ever there was a music defined by timbre, this was it.

Thursday, March 17, 2016

The Roman melting pot

Here's my column for the March issue of Nature Materials.


Recycling of materials is generally good for the planet, but it makes life hard for archaeologists. Analysis of ancient materials, for example by studying element or isotope compositions, can provide clues about the provenance of the raw materials and thus about the trade routes and economies of past cultures. But that business becomes complex, even indecipherable, if materials were reused and perhaps reprocessed in piecemeal fashion.

This, however, does seem to have been the way of the world. Extracting metals from ores and minerals from quarries and mines, and making glass and ceramics, were labour-intensive and often costly affairs, so that a great deal of the materials inventory was repurposed. Besides, the knowledge was sometimes lacking to make a particular material from scratch in situ. The glorious cobalt-blue glass in the windows of medieval French churches and cathedrals is often rich in sodium, characteristic of glass from the Mediterranean region. It was probably made from shards imported from the south using techniques that the northern Europeans didn’t possess, and perhaps dating back to Roman or Byzantine times. The twelfth-century monk Theophilus records that the French collected such glass and remelted it to make their windows [1].

In that instance, composition does say something about provenance. But if glass was recycled en masse, the chemical signature of its origin may get scrambled. It’s not surprising that such reuse was very common, for making glass from scratch was hugely burdensome: by one estimate, 100 kg of wood was needed to produce the ash for making 2 kg of glass, and collecting it took a whole day [2].

Just how extensively glass was recycled in large batches in Roman times is made clear in a new study by Jackson and Paynter [3]. Their analysis of glass fragments from a Roman site in York, England, shows that a lot of it came out of “a great big melting pot”: a jumble of recycled items melted together. The fragments can be broadly divided into classes differentiated by their antimony and manganese compositions. Both of these metals were typically added purposely during the Roman glass-making process because they could remove the colour (typically a blue-green tint) imparted by the impurities, such as iron, in the sand or ash [4]. Manganese was known in medieval Europe as “glassmaker’s soap”.

It’s the difficulty of making it that meant colourless glass was highly prized – and so particularly likely to be recycled. The results of Jackson and Paynter confirm how common this was. The largest category of glass samples that they analysed – around 40 percent of the total – contained high levels of both Sb and Mn, implying that glass rendered colourless by either additive would be separated from the rest and then recycled by melting.

But most of those samples aren’t colourless. That’s because remelting tends to incorporate other impurities, such as aluminium, titanium and iron, from the crucibles, furnaces or blowing irons. The recycled glass may then end up as tinted and undistinguished as that made with only low amounts of Mn. As a result, while it is derived from once highly prized, colourless glass reserved for fine tableware, this high Sb-Mn glass becomes devalued and used for mundane, material-intensive items such as windows and bottles. Eventually it just disappears into the melting pot.

1. Theophilus, On Divers Arts, transl. Hawthorne, J. G. & Smith, C. S. (Dover, New York, 1979).
2. Smedley, J. W., Jackson, C. M. & Booth, C. A., in Ceramics and Civilisation Vol. 8, eds McCray, P. & Kingery, W. D. (American Ceramic Society, 1998).
3. Jackson, C. M. & Paynter, S., Archaeometry 58, 68-95 (2016). [here]
4. Jackson, C. M., Archaeometry 47, 763-780 (2005).

Tuesday, March 01, 2016

Many worlds or many words?

I’ve been rereading Max Tegmark’s 1997 paper on the Many Worlds Interpretation of quantum mechanics, written in response to an informal poll taken that year at a quantum workshop. There, the MWI was the second most popular interpretation adduced by the attendees, after the Copenhagen Interpretation (which is here undefined). What, Tegmark asks, can account for the robust, even increasing, popularity of the MWI even after it has been so heavily criticized?

He gives various possible reasons, among them the idea that the emerging understanding of decoherence in the 1970s and 1980s removed the apparently serious objection “why don’t we perceive superpositions then?” Perhaps that’s true. Tegmark also says that enough experimental evidence had accumulated by then that quantum mechanics really is weird (quantum nonlocality, molecular superpositions etc) that maybe experimentalists (apparently a more skeptical bunch than theorists) were concluding, “hell, why not?” Again, perhaps so. Perhaps they really did think that “weirdness” here justified weirdness “there”. Perhaps they had become more ready to embrace quantum explanations of homeopathy and telepathy too.

But honestly, some of the stuff here. It’s delightful to see Tegmark actually write down for once the wave vector for an observer, since I’ve always wondered what that looked like. This particular observer makes a measurement on the spin state of a silver atom, and is happy with an up result but unhappy with a down result. In the former case, her state looks like this: |☺>. The latter case? Oh, you got there before me: |☹>. These two states are then combined as tensor products with the corresponding spin states. These equations are identified by numbers, rather as you do when you’re doing science.

Well, but what then of the objection that the very notion of probability is problematic when one is dealing with the MWI, given that everything that can happen does happen with certainty? This issue has been much debated, and certainly it is subtle. Subtler, I think, than the resolution Tegmark proposes. Let’s suppose, he says, that the observer is sleeping in bed when the spin measurement is made, and is placed in one or other of two identical rooms depending on the outcome. Yes, I can see you asking in what sense she is then an observer, and invoking Wigner’s friend and so on, but stay with me. You could at least imagine some apparatus designed to do this, right? So then she wakes up and wonders which room she is in. And she can then meaningfully calculate the probabilities – 50% for each. And, says Tegmark, these probabilities “could have been computed in advance of the experiment, used as gambling odds, etc., before the orthodox linguist would allow us to call them probabilities.”

Did you spot the flaw? She went to sleep – perhaps having realized that she’d have a 50% chance of waking up in either room – and then when she woke up she could find out which. But hang on – she? The “she” who went to sleep is not the “she” who woke up in one of the rooms. According to this view of the MWI, that first she is a superposition of the two shes who woke up. All that first she can say is that with 100% certainty, two future shes will occupy both rooms. At that point, the “probability” that “she” will wake up in room A or room B is a meaningless concept. “She”, or some other observer, could still place a bet on it, though, right, knowing that there will be one outcome or the other? Not really – rational betters would know that it makes no difference, if the MWI holds true. They’ll win and lose either way, with certainty. I wonder if Max, who I think truly does believe the MWI, would place a bet?

The point, I think, is that a linguist would be less bothered by the definition of “probability” here than by the definition of the observer. Posing the issue this way involves the usual refusal to admit that we lack any coherent way to relate the experiences of an individual before a quantum event (on which their life history is contingent) to the whole notion of that “same” individual afterwards. Still, we have the maths: |☺> + |☹> (pardon me for not normalizing) becomes |☺> and |☹> afterwards. And in Tegmark’s universe, it’s the maths that counts.

Oh, and I didn’t even ask what happens when the probability of the spin measurements is not 50:50 but 70:30. Another day, perhaps.

Friday, February 19, 2016

Manipulated by music

Here's my music psychology column from the latest issue of Sapere magazine.


Does Alex, the ultra-violent delinquent in Anthony Burgess’ novel A Clockwork Orange, find something in Beethoven that matches his psychopathic tendencies? Does Beethoven perhaps even incite them? We’re left to guess. It seems more than mere coincidence however, that 16 years after Stanley Kubrick’s notorious movie of the novel, musicologist Susan McClary argued that Beethoven’s Ninth Symphony, one of Alex’s favourites, articulates a rapist’s rage.

That suggestion drew much criticism, even derision. But behind it seems to lie the suspicion that music can influence behaviour, for better or worse. It’s an ancient idea. Aristotle felt that the wrong kind of music can lead a person astray, while the right kind cultivates good citizenship. Such convictions meant that music was strictly regulated in Athens and Sparta. The Greeks organized their music in terms of modes – a little like our major and minor scales – and Plato insists that the Dorian mode is the one to induce bravery and resolve. Armies have long marched to war to the sounds of martial music, whether it’s the skirling of a Scottish bagpipe or Wagner’s “Ride of the Valkyries” blasting from the attack helicopters in Apocalypse Now.

That’s just one arena in which music is thought to manipulate mood. Ever since efficiency became the mantra of the modern workplace, employers have hoped that music will boost workers’ productivity. There’s a great deal of wishful thinking and shoddy science in this field, but some serious study too. The stereotype is of factories piping music to workers engaged in robotic routines, but in fact much of the interest is in using music to boost creativity. One study in 2012 found that workers in a computer software company solved problems faster and had better ideas when allowed to listen to music of their choice: a sign that positive mood makes for better work, rather than an indication of specific links between the type of music and productivity. The effects were small, though, and almost non-existent for expert workers.

Retailers have a strong interest in this stuff. Can music make people buy more? I’m afraid so. It’s been shown that certain musical genres enhance our receptiveness to – and what we’ll pay for – certain products. We’ll pay more for mundane products like toothbrushes and light bulbs when we hear country music, and more for products connected to “social identity” (jewellery, pin badges) when listening to classical music. But sellers beware: get the musical choice wrong, and it’s worse than no music at all.

Friday, February 12, 2016

On being "harsh" to Babylonia

Never read the comments, they say, and indeed it’s often a depressing experience. But it can be instructive too. I’m a little astonished, but better informed, by the comments below my piece for the Atlantic on Babylonian astronomy. It had honestly never occurred to me that merely by suggesting we not call the Babylonian astronomers scientists I would be deemed to be dissing them. From what I’ve seen, this historians will not have anticipated his misconception either.

It speaks volumes, though, about our cultural preconceptions. The idea seems to be that if you deny someone is doing science then you’re saying they are ignorant fools dabbling in a load of superstition. Oh crikey – how did the public perception of the history of science ever come to this? What have we done to land us here? Who is to blame? It seems that all those scientists cherry-picking from the past to hand out medals for getting things “right” really have captured the conversation, if the popular conception is that if you don’t get a pat on the head for being a “good scientist” then you fail the test.

Actually this really is a bit depressing. I’m not sure even where to start. Maybe just with this: when we say that we are not going to mine the past for congruence with the present, we are not dismissing that past as worthless ignorance. On the contrary, it means that we are taking it seriously. (And that, incidentally, is why modern “astrology” seems to me not to be perpetuating but in fact to be undermining its tradition. To pretend that astrology is a serious business today is, even if unintentionally, to do an injustice to its historical context.) So let me just say it again: Babylonian astronomy was not an “imperfect science” but a self-contained intellectual framework woven into the rest of their culture.

Friday, January 29, 2016

What is selfish DNA?

Richard Dawkins’ The Selfish Gene was a landmark book in many ways: the first to lay out for a general audience the gene-centred view of evolution, but also one of the first to re-invigorate (arguably since the 1920s) science popularization as a part of the cultural conversation – and to show how beautifully written it should aspire to be. Dawkins might be divisive today for a variety of reasons, but science popularizers owe him a huge debt.

That’s why it is good and proper to have The Selfish Gene celebrated in Matt Ridley’s nice article in Nature. You can tell that I’m preparing to land a punch, can’t you?

Well, sort of. You see, I can’t help but be frustrated at how Matt turns one of the most problematic aspects of the book into a virtue. He suggests that Dawkins’ viewpoint was the inspiration for the discussions of selfish genes presented in Nature in 1980 by Orgel and Crick and by Doolittle and Sapienza. And it is true that The Selfish Gene is the first citation in both papers.

But both cite the book as one of the most recent discussions of the issue. As Orgel and Crick say, “The idea is not new. We have not attempted to trace it back to its root.” So it is not at all clear that, as Matt says, “a throwaway remark by Dawkins led to an entirely new theory in genomics”.

The problem is not simply one of quibbling about priority, however. Matt points out that this “throwaway remark” concerns the “apparently surplus DNA” – in the hugely problematic later coinage, junk DNA – that populates the genome, and which Dawkins suggested is merely parasitic. Yes indeed, and this is what those two later Nature papers discuss – as Orgel and Crick put it, DNA that “makes no specific contribution to the phenotype”.

But is this what The Selfish Gene is about? Absolutely not, and that’s why Dawkins’ remark was throwaway. His contention was that all genes should be regarded as “selfish”. Orgel, Crick, Doolittle and Sapienza are specifically talking about DNA that is produced and sustained by non-phenotypic selection. This, they say, is what we might regard as truly selfish DNA. Now, one can argue about the word “selfish” even in that context – it perhaps only makes sense if this DNA becomes detrimental to the survival of the organism. But the implication is that the phenotypic DNA is then not selfish, and that the term should be reserved for parasitic DNA. That makes good sense – and it is precisely these waters that Dawkins’ title muddied.

I can’t resist also asking what Matt means by saying that “genes that cause birds and bees to breed survive at the expense of other genes”. (“No other explanation makes sense…”) It seems to me more meaningful to say “genes that cause birds and bees to breed survive while helping other genes to survive.” I don’t exactly mean here to allude to the semantic selfish/cooperative debate (although there are good reasons to have it), but rather, it seems to me that Matt’s statement only makes sense if we replace “genes” with “alleles”. This is not pedantry. Genes do not, in general, compete with each other – at least, that is not the basis of the neodarwinian modern synthesis. Although one might find examples where specific genes do propagate at the expense of others, in general it is surely different variants of the same gene that compete with each other. And when a new allele proves to be more successful, other genes come along for the ride. To fail to make this distinction (which of course Matt recognizes) seems to me to propagate a very common misconception in evolutionary genetics, which is that genes are little pseudo-organisms all competing with one another. That isn’t a helpful or accurate way to present the picture.

Matt understands all this far better than I do. So I am quite prepared for him to tell me I have something wrong here.